Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(5): 247, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587580

RESUMEN

Alumina inorganic molecularly imprinted polymer (MIP) modified multi-walled carbon nanotubes (MWCNTs) on a glassy carbon electrode (MWCNTs-Al2O3-MIP/GCE) was firstly designed and fabricated by one-step electro deposition technique for the detection of uric acid (UA) in sweat. The UA templates were embedded within the inorganic MIP by co-deposition with Al2O3. Through the evaluation of morphology and structure by Field Emission Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM), it was verified that the specific recognition sites can be fabricated in the electrodeposited Al2O3 molecular imprinted layer. Due to the high selectivity of molecular imprinting holes, the MWCNTs-Al2O3-MIP/GCE electrode demonstrated an impressive imprinting factor of approximately 2.338 compared to the non-molecularly imprinted glassy carbon electrode (MWCNTs-Al2O3-NIP/GCE) toward uric acid detection. Moreover, it exhibited a remarkable limit of detection (LOD) of 50 nM for UA with wide detection range from 50 nM to 600 µM. The MWCNTs-Al2O3-MIP/GCE electrode also showed strong interference resistance against common substances found in sweat. These results highlight the excellent interference resistance and selectivity of MWCNTs-Al2O3-MIP/GCE sensor, positioning it as a novel sensing platform for non-invasive uric acid detection in human sweat.


Asunto(s)
Nanotubos de Carbono , Fosfatos , Sudor , Humanos , Polímeros Impresos Molecularmente , Ácido Úrico , Óxido de Aluminio
2.
Small ; : e2310591, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409636

RESUMEN

The family of polar hybrid perovskites, in which bulk photovoltaic effects (BPVEs) drive steady photocurrent without bias voltage, have shown promising potentials in self-powered polarization-sensitive photodetection. However, reports of BPVEs in 3D perovskites remain scare, being mainly hindered by the limited dipole moment or lack of symmetry breaking. Herein, a polar 3D perovskitoid, (BDA)Pb2 Br6 (BDA = NH3 C4 H8 NH3 ), where the spontaneous polarization (Ps )-induced BPVE drives self-powered photodetection of polarized-light is reported. Emphatically, the edge-sharing Pb2 Br10 dimer building unit allows the optical anisotropy and polarity in 3D (BDA)Pb2 Br6 , which triggers distinct optical absorption dichroism ratio of ≈2.80 and BPVE dictated photocurrent of 3.5 µA cm-2 . Strikingly, these merits contribute to a polarization-sensitive photodetection with a high polarization ratio (≈4) under self-powered mode, beyond those of 2D hybrid perovskites and inorganic materials. This study highlights the potential of polar 3D perovskitoids toward intelligent optoelectronic applications.

3.
Small ; 20(8): e2305990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37821401

RESUMEN

Halide composition engineering has been demonstrated as an effective strategy for optical and electronic properties modulation in 3D perovskites. While the impact of halide mixing on the structural and charge transport properties of 3D perovskitoids remains largely unexplored. Herein, it is demonstrated that bromine (Br) mixing in 3D (NMPDA)Pb2 I6 (NMPDA = N-methyl-1,3-propane diammonium) perovskitoid yields stabilized (NMPDA)Pb2 I4 Br2 with specific ordered halide sites, where Br ions locate at the edge-sharing sites. The halide ordered structure enables stronger H-bonds, shorter interlayer distance, and lower octahedra distortion in (NMPDA)Pb2 I4 Br2 with respect to the pristine (NMPDA)Pb2 I6 . These attributes further result in high ion migration activation energy, low defect states density, and enhanced carrier mobility-lifetime product (µτ), as underpinned by the electrical properties investigation and DFT calculations. Remarkably, the parallel configured photodetector based on (NMPDA)Pb2 I4 Br2 single crystal delivers a high on/off current ratio of 3.92 × 103 , a satisfying photoresponsivity and detectivity of 0.28 A W-1 and 3.05 × 1012 Jones under 10.94 µW cm-2 irradiation, superior to that of (NMPDA)Pb2 I6 and the reported 3D perovskitoids. This work sheds novel insight on exploring 3D mixed halide perovskitoids toward advanced and stable optoelectronic devices.

4.
Chem Commun (Camb) ; 59(79): 11795-11798, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37706286

RESUMEN

Broadband emissions from low-dimensional hybrid perovskites have aroused intense interest. However, the achievement of broadband red emission in lead halide perovskites remains challenging. Herein, we report a one-dimensional (1D) hybrid lead bromide perovskitoid, (HM)Pb2Br6 (HM = hexamethonium), featuring a corrugated "3 × 3" [Pb2Br6]2- chain. The unique structure results in intriguingly red emission peaking at 692 nm, with a PLQY of around 6.24%. Our spectroscopic and computational studies reveal that the red emission derives from self-localized Pb23+, Pb3+ and Br2- species confined within the inorganic lead bromide lattice that function as radiative centres. This finding will benefit the design of perovskite systems for efficient red emission.

5.
Anal Chim Acta ; 1269: 341405, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290852

RESUMEN

Owing to their intrinsic amplifying effect together with chemical stability, graphene electrochemical transistor sensors (GECTs) are gaining momentum for sensing applications. However, the surface of GECTs for different detection substances must be modified with different recognition molecules, which was cumbersome and lack a universal method. Molecularly imprinted polymer (MIP) is a kind of polymer with specific recognition function for given molecules. Here, MIP and GECTs were combined to effectively solve the problem of weak selectivity of GECTs, and achieve the high sensitivity and selectivity of MIP-GECTs equipment in detecting acetaminophen (AP) in complex urine environment. A novel molecular imprinting sensor based on Au nanoparticles modified zirconia (ZrO2) inorganic molecular imprinting membrane on reduced graphene oxide (ZrO2-MIP-Au/rGO) was proposed. ZrO2-MIP-Au/rGO was synthesized by one-step electropolymerization using AP as template, ZrO2 precursor as the functional monomer. The -OH group on ZrO2 and the -OH/-CONH- group on AP were easily bonded by hydrogen bonding to form a MIP layer on the surface, which allows the sensor to have a large number of imprinted cavities for AP specific adsorption. As a proof of method, the GECTs based on ZrO2-MIP-Au/rGO functional gate electrode has the characteristics of wide linear range (0.1 nM-4 mM), low detection limit (0.1 nM) and high selectivity for AP detection. These achievements highlight the introduction of specific and selective MIP to GECTs with unique amplification function, which could effectively solve the problem of selectivity of GECTs in complex environments, suggesting the potential of MIP-GECTs in real-time diagnosis.


Asunto(s)
Grafito , Nanopartículas del Metal , Impresión Molecular , Grafito/química , Acetaminofén , Técnicas Electroquímicas/métodos , Límite de Detección , Oro/química , Nanopartículas del Metal/química , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Electrodos
6.
Light Sci Appl ; 12(1): 136, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37271759

RESUMEN

Dynamic manipulation of electromagnetic (EM) waves with multiple degrees of freedom plays an essential role in enhancing information processing. Currently, an enormous challenge is to realize directional terahertz (THz) holography. Recently, it was demonstrated that Janus metasurfaces could produce distinct responses to EM waves from two opposite incident directions, making multiplexed dynamic manipulation of THz waves possible. Herein, we show that thermally activated THz Janus metasurfaces integrating with phase change materials on the meta-atoms can produce asymmetric transmission with the designed phase delays. Such reconfigurable Janus metasurfaces can achieve asymmetric focusing of THz wave and directional THz holography with free-space image projections, and particularly the information can be manipulated via temperature and incident THz wave direction. This work not only offers a common strategy for realizing the reconfigurability of Janus metasurfaces, but also shows possible applications in THz optical information encryption, data storage, and smart windows.

7.
ACS Appl Mater Interfaces ; 15(18): 22263-22273, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37114741

RESUMEN

Ga2O3 is a wide-bandgap semiconductor that has shown great potential for application in solar-blind ultraviolet (UV) photodetectors. However, the responsivity and detectivity of Ga2O3-based self-driven solar-blind UV photodetectors are insufficient for practical applications at present because of the limited separation of photogenerated carriers in the devices. In this work, Hf0.5Zr0.5O2/ß-Ga2O3 heterojunction-based self-driven solar-blind UV photodetectors are constructed by combining ferroelectric Hf0.5Zr0.5O2 (HfZrO2) material with Ga2O3, taking advantage of the ultrawide bandgap of HfZrO2 and the favorable II-type energy band configuration between both. Upon optimization, a HfZrO2/ß-Ga2O3 heterojunction-based UV photodetector with a HfZrO2 layer thickness of 10 nm is shown to provide remarkable responsivity (R = (14.64 ± 0.3) mA/W) and detectivity (D* = (1.58 ± 0.03) × 1012 Jones), which are much superior to those of a single Ga2O3-based device toward 240 nm light illumination. Further, the device performance is adjustable with varying poling states of HfZrO2 and shows substantial enhancement in the upward poling state, benefiting from the constructive coupling of the ferroelectric depolarization electric field in HfZrO2 and the built-in electric field at the HfZrO2/ß-Ga2O3 interface. Under illumination of weak light of 0.19 µW/cm2, the upward poled device shows significantly enhanced R (52.6 mA/W) and D* (5.7 × 1012 Jones) values. The performance of our device surpasses those of most previously reported Ga2O3-based self-driven photodetectors, indicating its great potential in practical applications for sensitive solar-blind UV detection.

8.
Anal Chim Acta ; 1239: 340719, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628721

RESUMEN

With the rapid development of wearable electronic devices, health monitoring is undergoing a fundamental shift from hospital-centered treatment to patient-centered diagnosis. Solution-gated graphene transistors provide an effective platform for developing high-sensitivity wearable devices due to their unique signal amplification, low energy consumption, and compatibility for miniaturization. However, it is still a major challenge to perform real-time sweat composition monitoring directly on the dry skin surface. In this work, a skin-based flexible gel electrolyte graphene transistor (GEGT) was successfully designed and fabricated for glucose detection, consisting of a gate electrode decorated with Au nanoparticles modified reduced graphene oxide (AuNPs/RGO) nanocomposites and a monolayer graphene channel. Glycerin gel was used to replace the traditional liquid electrolyte, not only could better fit the human skin, but also play the role of fluid collection, providing stable testing conditions for the sensor. Based on the high electron mobility of graphene channel and the excellent electrocatalytic performance of AuNPs/RGO nanocomposites, the constructed GEGT sensor exhibits excellent sensing performance for glucose with good selectivity, low operating voltage (0.5 V), wide detection range (10 nM - 25 mM), and low detection limit (10 nM). The device maintains stable performance after up to 1000 bending cycles with a bending radius of 4 mm. In addition, the GEGT sensor displays good accuracy in sweat detection and sensitive dynamic response during actual wearing, which provides a guarantee for the construction of wearable transistor devices and real-time health tracking.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Dispositivos Electrónicos Vestibles , Humanos , Grafito/química , Oro/química , Automonitorización de la Glucosa Sanguínea , Nanopartículas del Metal/química , Glucemia , Electrólitos , Glucosa
9.
Mikrochim Acta ; 190(1): 30, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525121

RESUMEN

Amino functionalized zirconium-based metal-organic framework (NH2-UiO-66) and zinc-based zeolitic imidazolate framework (ZIF-8) were integrated to develop a core-shell architectured hybrid material (NH2-UiO-66@ZIF-8, NU66@Z8). The morphology and structure evolutions of core-shell NU6@Z8 were investigated by FE-SEM, XRD, FTIR, and XPS. The NU66@Z8 combined with carboxylated multi-walled carbon nanotubes (CMWCNT) was deposited on a glassy carbon electrode (GCE) for fabricating an electrochemical platform towards detecting Pb2+ and Cu2+. The NU66@Z8/CMWCNT/GCE revealed significantly improved electrochemical performance for determination of Pb2+ and Cu2+ compared with the individual components, which can be attributed to the strong adsorption capacity, unique core-shell structure, and large electrochemical active surface area of NU66@Z8/CMWCNT. Under the optimal conditions, the developed sensor exhibited excellent sensing capability with a low limit of detection (Pb2+,1 nM; Cu2+, 10 nM) and a wide determination range (Pb2+,0.003-70 µM; Cu2+, 0.03-50 µM). The sensor showed high selectivity towards common interfering ions and good repeatability. The real sample recoveries of proposed sensor were in the range 95.0-103% for Pb2+ (RSD ≤ 5.3%) and 94.2-106% for Cu2+ (RSD ≤ 5.9%), suggesting that the NU66@Z8/CMWCNT is suitable for examining trace heavy metals in natural environment.


Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Compuestos Organometálicos , Zeolitas , Nanotubos de Carbono/química , Plomo , Límite de Detección , Nanocompuestos/química
10.
ACS Appl Mater Interfaces ; 14(47): 53065-53073, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36394964

RESUMEN

Two-dimensional (2D) Dion-Jacobson (DJ) perovskites are drawing significant attention in optoelectronic fields because of their enhanced out-of-plane electron coupling and improved structure stability. However, the structural effects of organic cations on the in-plane charge transport properties of 2D DJ lead bromide perovskites have remained less explored. Herein, we adopt asymmetric 3-(dimethylamino)-1-propylammonium (DMPD) and symmetric butane-1,4-diammonium (BDA) to systematically investigate the influence of organic cations on the structural, optical, and in-plane charge transport properties of 2D lead bromide perovskites. The large penetration depth of DMPD2+ induces a decreased perovskite layer distortion and a lower bandgap in DMPDPbBr4, compared with that of BDAPbBr4. Moreover, DMPDPbBr4 is shown to possess a low exciton binding energy, a low defect density, and a low ion migration activation energy, thereby yielding a more efficient in-plane charge collection efficiency than BDAPbBr4. Density functional theory calculations suggest that the improved in-plane charge transport can be traced to the enlarged antibonding coupling between Pb-6s and Br-4p orbitals that enables a high band dispersion and a low carrier effective mass in the in-plane direction of DMPDPbBr4. Finally, the planar Ag/DMPDPbBr4/Ag photodetector delivers a satisfying detectivity of 1.73 × 1012 Jones under an incident power intensity of 0.16 mW cm-2 and a high on/off ratio of 5.3 × 103. The above findings offer novel insight for the design of 2D DJ lead bromide perovskites for optoelectronic devices.

11.
Sci Adv ; 8(41): eadd1296, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36223473

RESUMEN

Reconfigurable intelligent surfaces (RISs) play an essential role in various applications, such as next-generation communication, uncrewed vehicles, and vital sign recognizers. However, in the terahertz (THz) region, the development of RISs is limited because of lacking tunable phase shifters and low-cost sensors. Here, we developed an integrated self-adaptive metasurface (SAM) with THz wave detection and modulation capabilities based on the phase change material. By applying various coding sequences, the metasurface could deflect THz beams over an angle range of 42.8°. We established a software-defined sensing reaction system for intelligent THz wave manipulation. In the system, the SAM self-adaptively adjusted the THz beam deflection angle and stabilized the reflected power in response to the detected signal without human intervention, showing vast potential in eliminating coverage dead zones and other applications in THz communication. Our programmable controlled SAM creates a platform for intelligent electromagnetic information processing in the THz regime.

12.
Water Res ; 221: 118737, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716414

RESUMEN

The rigid cell membrane structure is widely thought to retain the intracellular water and positively contributes to the presence of bound water in waste-activated sludge (WAS), which is the main obstacle of its highly-efficient dewatering. However, few studies realized the quantification of intracellular water fraction in the total bound water. Thus, there still may be some debates on whether and what extent of cell lysis is optimal for the dewaterability improvement. This study specifically focused on the effect of microbial cell lysis on the water occurrence states of WAS. The sonication, cyclic freezing-thawing and dimethyl sulfoxide (DMSO) amendment were used as the non-chemical means for cell lysis without altering the chemical compositions of WAS. The extent of cell lysis was quantified by the aqueous lactate dehydrogenase (LDH) released from intracellular cytoplasm and the water occurrence states of WAS were characterized by the transverse relaxation time (T2) spectra of low-field nuclear magnetic resonance (NMR). The results indicated that 8 h sonication (60 W/g dry matter, solid content of WAS: 23.10±0.30 g/L) completely lysed the microbial cells, but only increased the moderately mobile water fraction from 0.555% to 2.370%; similarly, it could be estimated that nearly 15% of cells were destructed after 5 times of freezing-thawing, but the fraction of moderately mobile water only rose from 0.555% to 0.805%. The transmission electron microscope (TEM) with ultrathin sections visually tracked the WAS micro-morphology accompanied with the cell lysis; the sonication caused the notable lysis of microbial cells and dispersed the external encapsulating components, which originally surrounded microbial cells closely; most of the microbial cells could be deformed but wasn't lysed by cyclic freezing-thawing; DMSO amendment made the outer edge of microbial cells tend to be rough, which may reflect the DMSO-enhanced permeability of cell membrane. The correlative analysis further indicated that the capillary suction time (CST) had the close correlation with particle size/zeta potential (Pearson coefficient>0.85, p-value<0.05), but no strong correlation was identified between CST and slightly reduced bound water contents (Pearson coefficient<0.9, p-value≥0.05). Instead of the cell integrity, the compositional aggregation states dominated the water occurrence states of WAS. Highly-efficient conditioning approaches should rely on the reduction of bio-floc porosity through eliminating solid-liquid interfacial affinity instead of damaging the cell membrane structure.


Asunto(s)
Aguas del Alcantarillado , Agua , Dimetilsulfóxido , Tamaño de la Partícula , Aguas del Alcantarillado/química , Sonicación , Eliminación de Residuos Líquidos/métodos , Agua/química
13.
J Phys Chem C Nanomater Interfaces ; 126(17): 7696-7703, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558823

RESUMEN

In BiFeO3 (BFO), Bi2O3 (BO) is a known secondary phase, which can appear under certain growth conditions. However, BO is not just an unwanted parasitic phase but can be used to create the super-tetragonal BFO phase in films on substrates, which would otherwise grow in the regular rhombohedral phase (R-phase). The super-tetragonal BFO phase has the advantage of a much larger ferroelectric polarization of 130-150 µC/cm2, which is around 1.5 times the value of the rhombohedral phase with 80-100 µC/cm2. Here, we report that the solubility of Ca, which is a common dopant of bismuth ferrite materials to tune their properties, is significantly lower in the secondary BO phase than in the observed R-phase BFO. Starting from the film growth, this leads to completely different Ca concentrations in the two phases. We show this with advanced analytical transmission electron microscopy techniques and confirm the experimental results with density functional theory (DFT) calculations. At the film's fabrication temperature, caused by different solubilities, about 50 times higher Ca concentration is expected in the BFO phase than in the secondary one. Depending on the cooling rate after fabrication, this can further increase since a larger Ca concentration difference is expected at lower temperatures. When fabricating functional devices using Ca doping and the secondary BO phase, the difference in solubility must be considered because, depending on the ratio of the BO phase, the Ca concentration in the BFO phase can become much higher than intended. This can be critical for the intended device functionality because the Ca concentration strongly influences and modifies the BFO properties.

14.
Mikrochim Acta ; 189(6): 232, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614151

RESUMEN

A new approach is presented to fabricate flexible surface-enhanced Raman scattering (SERS) substrate of Ag nanocubes monolayer-modified polydimethylsiloxane (Ag NCs/PDMS) through a powerful three-phase interface self-assemble method. The morphologies and crystal structures were characterized by scanning electron microscopy and X-ray diffraction. The self-assembled Ag NCs/PDMS substrate exhibited high SERS activity and good signal homogeneity, which was successfully used for quantitative detection of thiram; the detection limit reached 10 ng/mL, and the linear range is 10-1000 ng/mL. Furthermore, the flexible SERS substrates were successfully employed to detect thiram residues on factual apple samples, and trace amount (1 ng/cm2) of thiram residues was detected on apple peels. The excellent SERS detection ability of self-assembled Ag NCs/PDMS substrate indicated that it will play an important role in pesticide detection in the future.


Asunto(s)
Malus , Plaguicidas , Malus/química , Plaguicidas/análisis , Plata/química , Espectrometría Raman/métodos , Tiram
15.
Anal Chim Acta ; 1201: 339653, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35300803

RESUMEN

Accurate measurement of dopamine (DA) is of great significance for human health monitoring and disease prevention. Herein, two-dimensional Ti3C2Tx MXene with high performance was prepared by layer liquid exfoliation method and used for the modification of gate electrode. The glassy carbon electrode (GCE) modified with Pt/Ti3C2Tx was used as the gate, and assembled with monolayer graphene channel to form a complete transistor device. The device combines the amplification effect of transistors, good electrical conductivity of Ti3C2Tx MXene and excellent catalytic properties of Pt nanoparticles, showing a low detection limit (50 nM) and a wide detection concentration range (50 nM-9 mM) of DA. Ti3C2Tx MXene not only provides a large number of attachment sites for the deposition of Pt nanoparticles, but also improves the electrical conductivity and hydrophilicity of the electrode material, thus enhancing the sensitivity of the device and facilitating the penetration of the solution to be measured. In addition, Ti3C2Tx MXene is negatively charged, it has a certain electrostatic adsorption effect on protonated DA and electrostatic repulsion effect on negatively charged interfering substances. As a result, the device exhibits good selectivity, which provides a great application prospect for the construction of DA sensing platform.


Asunto(s)
Grafito , Carbono/química , Dopamina , Electrodos , Grafito/química , Humanos , Titanio
16.
Anal Chim Acta ; 1191: 339306, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35033240

RESUMEN

A novel graphene electrochemical transistor (GECT) sensor based on Au-poly(3,4-ethylenedioxythiophene)/reduced graphene oxide (Au-PEDOT/rGO) nanocomposites functionalized the gate electrode and monolayer graphene as channel was proposed and constructed for the ultra-sensitive detection of acetaminophen (AP). Au-PEDOT/rGO nanocomposites were synthesized by a simple one-pot method to modify the gate electrode of GECT. With the high catalytic activity of Au nanoparticles, the good conductivity and stability of PEDOT, the large specific surface area and abundant adhesion sites of rGO, the sensitivity and stability of the device for AP detection could be effectively improved. The sensing mechanism of the device was that the electrochemical reactions of the AP on the surface of gate electrode causes the effective gate voltage on the GECT to change, thereby adjusting the carrier concentration and current of the graphene channel. Combined with the excellent catalytic properties of Au-PEDOT/rGO nanocomposites and the high carrier mobility of the graphene channel, the resulting device has remarkable sensing performance for AP, with a detection limit as low as 1 nM and a linear range from 1 nM to 8 mM. In addition, the device has good anti-interference ability and accuracy in the detection of AP in urine samples and tablets, which proved that it could be used to determine AP in human non-invasive and pharmaceutical products. The GECT sensor based on Au-PEDOT/rGO provides an efficient, sensitive and cost-effective sensing platform for AP detection, and is expected to realize in vitro diagnosis of diseases.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Acetaminofén , Compuestos Bicíclicos Heterocíclicos con Puentes , Técnicas Electroquímicas , Electrodos , Oro , Humanos , Polímeros
17.
Chem Asian J ; 16(24): 4137-4144, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34713593

RESUMEN

Hybrid bismuth halides perovskites have emerged as promising candidates for X-ray detection, due to the strong absorptivity of high-energy X-ray photons, high resistivity, large carrier diffusion length and low toxicity. However, the mostly investigated hybrid bismuth iodides single crystals are usually opaque and require a harsh synthesis process. Herein, novel one-dimensional (1D) pentamethylenediamine bismuth bromide (PDA)BiBr5 single crystals were synthesized via an antisolvent-assisted crystallization method at room temperature. Bulk (PDA)BiBr5 single crystals have sizes of 10×1.3×1.5 mm3 and high transparency. They are shown to have low density of defects of 2.0×1010  cm-3 and obvious photoconductivity. Moreover, they exhibit large bulk resistivity of 2.13×1011 â€…Ω cm and good X-ray attenuation coefficient. Consequently, the vertical structured (PDA)BiBr5 single crystal X-ray photoconductor produces a sensitivity of 3.8 µC Gyair -1  cm-2 . This study provides a facile strategy for synthesizing bulk hybrid bismuth bromides single crystals with potential X-ray detection application.

18.
ACS Omega ; 6(28): 18395-18403, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34308070

RESUMEN

Codeposition of Pt and Au on Ni wire was performed using a simple treatment of immersing Ni wire in aqueous solutions containing both K2PtCl4 and HAuCl4. For evaluating the electrochemical properties of the thus-prepared electrodes, cyclic voltammograms (CVs) of 1.0 M ethanol in 1.0 M NaOH aqueous solutions were recorded. Compared with Pt- or Au-deposited Ni wire electrodes prepared by treating Ni wire in aqueous solutions of a single component, e.g., 1.0 mM K2PtCl4 or 1.0 mM HAuCl4, a noteworthy increase in the electrocatalytic current was observed for the oxidation of ethanol with a PtAu-codeposited Ni (PtAu/Ni) wire electrode even when it was prepared in an aqueous solution containing both 0.10 mM K2PtCl4 and 0.10 mM HAuCl4. In addition, the shape and the peak potentials of CVs recorded using PtAu/Ni wire electrodes were found to be different from those recorded with the Pt- or Au-deposited Ni wire electrodes. Because the CV responses typical of the PtAu/Ni wire electrodes were observed even when a PtAu/Ni wire electrode was prepared in an aqueous solution containing both 0.010 mM K2PtCl4 and 1.0 mM HAuCl4, it is considered that a small amount of Pt was effectively modified or incorporated and affected the electrochemical properties significantly. The CV results for ethanol oxidation were compared with those for the electrocatalytic oxidations of methanol, 1-propanol, and 2-propanol. Besides, the CV results recorded with the present PtAu/Ni wire electrodes are discussed in comparison with some previous results obtained using other PtAu nanoelectrocatalysts.

19.
Nanoscale ; 13(16): 7783-7791, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33871530

RESUMEN

The alternative VO2/TiO2 nanostructure is a potential candidate for application in optical or electrical devices. A promising and straightforward route to form tunable alternative VO2/TiO2 nanostructure is in high demand. Herein, we demonstrate that the VO2/TiO2 nanostructure could be self-assembled from the VO2 film/TiO2 substrate via directional cationic migration, characterizing Ti-rich nano-lamellas with nanoscale spacing along the c-axis. Through aberration-corrected high-resolution transmission electron microscopy, it has been shown that the realization of directional cationic migration is assisted by the interstitial position inside the VO2 lattice. Non-equilibrium cationic diffusion could even retain these interstitial atoms in the form of incoherent strain lines, which affect the local electronic structure as validated by theoretical calculation. Due to Ti-rich nano-lamellas and incoherent strain lines, the phase transition temperature decreased (∼10 °C). The idea of tailoring the elemental distribution by directional cationic diffusion significantly broadens the functional application of VO2 films.

20.
ACS Appl Mater Interfaces ; 12(48): 53957-53965, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33205953

RESUMEN

Ferroelectric (FE) materials are thought to be promising materials for self-powered ultraviolet (UV) photodetector applications because of their photovoltaic effects. However, FE-based photodetectors exhibited poor performance because of the weak photovoltaic effect of FE depolarization field (Edp) on the separation of photo-generated carriers. In this work, self-powered photodetectors based on both Edp and built-in electric field at the p-n junction (Ep-n) were designed to obtain enhanced device performance. A NiO/Pb0.95La0.05Zr0.54Ti0.46O3 (PLZT) heterojunction-based device is constructed to take advantage of energy level alignments that favor electron extraction. The device exhibits a tunable performance upon varying the polarization direction of PLZT. The NiO/PLZT heterojunction-based device with the PLZT layer in the poling down state shows a higher responsivity [R = (1.8 ± 0.12) × 10-4 A/W] and detectivity [D* = (3.69 ± 0.2) × 109 Jones], a faster response speed (τr = 0.34 ± 0.03 s, τd = 0.36 ± 0.02 s), and a lower dark current [Idark = (1.3 ± 0.19) × 10-12 A] under zero bias than the PLZT-based device because of the synergistic effects of Edp and Ep-n. Moreover, under weak-light illumination (0.1 mW/cm2), it exhibits even higher R [(6.3 ± 1.2) × 10-4 A/W] and D* [(1.29 ± 0.26) × 1010 Jones] values, which surpass those of most previously reported FE-based self-powered photodetectors. Our work emphasizes the role of the coupling effect between Ep-n and Edp in the photovoltaic process of NiO/PLZT heterojunction-based devices and provides an effective way to promote the self-powered UV photodetector applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...